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CO2 Capture Membranes Technology 
MEE = 80 % 

4-methoxy phenol = 16 % 

2-allylphenol = 4 % 
 

• High performance 
• High tackiness 
• Good HF support 

compatibility  
 

Key Challenges  
 

Post-Combustion Carbon 
Capture Technology  

Potential Solution 
 

Hybrid Membrane +  
Cryogenic Process 
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• 3-year, $3M program, 20 % cost share from GE 

• Budget period 1: October 2011 – June 2013 

• Budget period 2: June 2013 – September 2014  

 

 

• Hollow fiber fabrication 
& characterization  

• Module design  

• Technical & economic 
feasibility analysis 

• Polymer development  

• Polymer property 
optimization  

• Coating solution 
development  

• Fiber coating process 
development 

• Effect of fly ash on 
membranes  

• Modeling of key 
membrane properties  

 

• Membrane 
performance 
validation in coal 
flue-gas  

Project Objective: Develop bench-scale thin film coated composite hollow fiber 

membrane materials and processes for CO2/N2 separation in coal flue-gas at 60 

°C with at least 90% CO2 capture with less than 35% increase in levelized cost of 

electricity 
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Develop thin film polymer composite hollow fiber membranes  
& processes for economical post-combustion CO2 capture 
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Gas Separations Membrane Fundamentals  
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Support 
Layer   

≈ 300 µm 

Feed  

Selective 

layer    

Schematic representation of post-combustion CO2 
capture using hollow fiber membranes 
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Membrane Systems Considerations  

 

8 *Adapted from Merkel, Tim C., et al. "Power plant post-combustion carbon dioxide capture: An opportunity for 
membranes." Journal of Membrane Science 359.1 (2010): 126-139. 

Schematic representation of the membrane process* 

• Various membrane process designs considered  

• Two stage membrane process shortlisted for further discussion  
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Membrane Systems Considerations  

Parameter Values  

Membrane-I/Membrane-II Vacuum/air sweep 

Flue gas composition  
DOE baseline case 11* 
CO2/N2/H2O/O2(vol.%) 

13.53/68.08/15.17/2.40  

Flue gas flow rate  540 m3/s 

Flue gas pressure  1.2-3 Bar  

Flue gas temperature  45 °C 

Membrane Selectivity (CO2/N2) 30-80 

Membrane Permeance  100-2500 GPU 

Summary of economic model assumptions  
 

9 *Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity, Revision 2, 
November 2010.,DOE/NETL-2010/1397 
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Membranes Systems Model  

Aspen custom model® of counter-
current/counter-current membranes 
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Aspen custom model® of cross-
current/counter-current membranes 
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Membranes Model Analysis  

• Counter-current/counter-current configuration preferable  
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Comparison of  membrane configurations  

*Assumptions – Membrane-I pressure ratio = 10, SelectivityCO2/N2= 50, 
PermeanceCO2 = 1000 GPU 
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Membranes Model Analysis  

• Overall membrane area highly dependent on permeance and 
mildly on selectivity in the selected range  
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Sensitivity analysis of overall membrane area to permeance & selectivity* 

*Assumptions – Counter/counter-current membranes, membrane-I pressure ratio = 10  
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Sensitivity analysis of membrane process CO2 purity to selectivity 

Membranes Model Analysis  

• Overall membranes process CO2 purity strongly dependent on 
selectivity 
 

 
 

13 *Assumptions - Counter/counter-current membranes, membrane-I pressure ratio = 10 
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Overall  Membranes System Analysis  
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Aspen Plus® systems model of PC-boiler integrated with CO2 capture 
membranes model 
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Increase in COE  

• Decreases with increase in membrane permeance in the lower 
range, plateaus at higher permeance range   

• Minimum at ~2 bar feed pressure 

 
 

Membrane Process COE Analysis  

 

15 *Assumptions – Counter/counter-current membranes, Membrane-I pressure ratio = 10, 
Selectivity CO2/N2 = 50 

Sensitivity analysis of increase in COE with 
membrane permeance 

Sensitivity analysis of increase in COE with 
membrane feed pressure  
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Membrane Process COE Analysis  
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Increase in COE  

• Decreases with decrease in membrane module cost 

 

 

*Assumptions - Counter/counter-current membranes, selectivityCO2/N2 = 50, Membrane-I    
pressure ratio = 5   

Sensitivity analysis of increase in COE with membrane 
module cost ($/m2) 
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Polyphosphazene Materials  

• Low Tg polymers with good CO2 separation & permeability 

• Polymer properties tuned for HF coatability  
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Film forming 

Crosslinking 

Strong CO2 

interaction 

General structure of stabilized  
(methoxyethoxy) ethanol phosphazene (MEEP)  

* L. M. Robeson, The Upper Bound Revisited. J. Membr. Sci. 2008, 320, 390 
+C.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf, F.F. Stewart, Characterization of gas transport in selected rubbery  
amorphous polyphosphazene membranes, J. Membr. Sci. 186 (2001) 249 

 

Permeability-selectivity plot for CO2/N2 gas pair*+ 
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Batch „repair ‟ coating process  

• Key factors affecting HF support coatability  

o Reduced surface pore size 

o Substrate pore uniformity  

o Reduced physical handling  

• Defect-free membrane modules fabricated & studied for long 
term performance testing  

Continuous „roll-to-roll‟ coating process 

Composite HF Fabrication  
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• Membranes tested under realistic flue gas mixture: 
N2/CO2/O2/NO/SO2 - 80/15/5/80 ppm/50 ppm (vol. %) saturated 
with water vapor    

WRI flue gas membrane testing rig (flat sheet & HF modules)   
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HF membrane module performance testing   

HF Membranes Testing 

• HF membrane mini-modules (10” length) performance found to be 
stable  
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Conclusions & Work-in-Progress  
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 Preliminary techno-economic analysis conducted to 
determine membrane performance targets  

 Composite hollow fiber membranes developed & 
performance validated  

• Optimize membrane performance & improve coating 
solution properties  

• Optimize coating protocols for continuous & batch 
processes  

• Scale-up membrane module & study HF membrane 
long-term performance  
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Thank You  
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